Fin Fan® Air Cooled Heat Exchangers – Life Cycle Costs

Sam E. Chapple, P. Eng.
Chief Technical / Business Development Officer

Introduction

Fin-Fan® Air Cooled Heat Exchangers dominate the plot layout of refineries and petrochemical plants. The failure of this equipment can deplete the profitability of a facility instantly with a failure, or with gradual efficiency erosion over time. Life Cycle Cost (LCC) should be the only measure of importance to a plant owner to avoid expensive retrofitting to correct air cooler component failures. These failures can be detected immediately on start up, or a year or two later, just past the warranty period. The equipment selected for the project must meet the owner’s plant investment criteria based on the Lowest Cost of Ownership over the predicted plant life, not lowest initial capital cost. Equipment vendors must be able to demonstrate measurably, the Technical Separation incorporated to ensure owner LCC satisfaction.
Table of Contents

Executive Summary

Lowest Cost of Ownership – A Life Cycle Cost Analysis

Technical Separation

Elements of the Life Cycle Cost Equation

Details of Calculation

Tabulation of Results
Executive Summary - 20 Year Life Cycle Cost

Hudson Products Corporation  =  $586,530
Low Capital Cost Manufacturer  =  $2,528,500
Lowest Cost of Ownership – a Life Cycle Cost Analysis

The focus on initial capital cost in recent energy mega projects is creating a lump sum turnkey environment which will potentially impact the end users total cost of ownership long before reaching the plant life and ultimate investment pay out.

Plant operators worldwide agree on the following **Top 4 Performance Failures:**

- Finned tubing failures
  - Fin to process tube thermal and mechanical bond degradation
  - Under fin corrosion
  - Fin fouling
- Fan performance failures
  - Poor fan efficiencies
    - Lack of aerodynamic blade shape
  - Cracking and premature failures
- Fan Bearing Failures
  - Use of standard off the shelf bearings leading to premature failure
- Hot Air Recirculation
  - Excessive face velocities

Technical Separation – Hudson® is the Only Air Cooler Manufacturer in the World:

- To Manufacture:
  - Hudson® patented extruded finned tube and Hudson® finning machines
  - Fans (FRP and aluminum) Tuf-Lite® and Cofimco®
  - Fan shaft Fin-Fan® bearings specifically for Air Cooler operating conditions
  - Louvers
  - Auto-Variable® fan control systems
- To Test 1% of all fin tube production for thermal performance
- To Wind Tunnel Test Hudson® Fans for Accurate Fan Curve Publication
- Field Noise Test Hudson® Fans
- To use Computational Fluid Dynamics to Model Hot Air Recirculation
Elements of the Life Cycle Cost Equation

\[ \text{LCC} = C_{ic} + C_{be} + C_{inst} + C_e + C_m + C_{LP} + C_S \]

LCC = Life Cycle Cost

- \( C_{ic} \) = Initial Cost
- \( C_{be} \) = Bid Evaluation and Inspection Costs
- \( C_{inst} \) = Delivery and Installation Costs
- \( C_e \) = Energy Cost
- \( C_m \) = Maintenance Cost
- \( C_{LP} \) = Cost of Lost Production due to Poor Efficiency of Low Cost Fans and Finned Tubes
- \( C_S \) = Savings with Regional Technical Centre
Definitions

\( C_{ic} = \text{Initial Cost} \)

These costs include the engineering, manufacturing, spare parts, and preparation for shipment costs of the air cooled heat exchanger.

\( C_{be} = \text{Bid Evaluation and Inspection Costs} \)

Low capital cost equipment providers will require additional project bid evaluation hours ensuring specifications are met, along with added inspection costs for low cost shops ensuring adherence to project specifications.

\( C_{inst} = \text{Delivery and Installation Costs} \)

Units shipped locally as modules will significantly reduce expensive on site construction costs usually hidden in the construction costs and therefore not measurable.

\( C_{e} = \text{Energy Cost} \)

The required input fan power formula is:

\[
\text{Brake Horse Power (BHP)} = \frac{\text{Actual Fan Static Pressure} \times \text{Air Volume}}{\text{Constant} \times \text{Fan Static Efficiency}}
\]

This emphasizes the importance of the Fan Efficiency on the air cooler power consumption.

It is important to note that the motor power is proportional to the cube power of the fan flow rate. Once a unit underperforms, a 10% increase in air flow will require a 33% increase in motor power.

\( C_{m} = \text{Maintenance Cost} \)

Conventional bearings are not suitable for arid, high ambient climates. Bearing lifecycles are reduced causing outages, and lost production. Poor quality fans will crack and fatigue in the extreme GCC heat with safety implications, and lost production.

\( C_{LP} = \text{Cost of Lost Production due to Poor Efficiency of Low Cost Fans and Finned Tubes} \)

Flaring of incompletely condensed product.
Premature finned tube degradation due to low cost, untested finning processes.

\( C_{S} = \text{Savings with Regional Technical Centres} \)

Regular on site testing, inspection, fan adjustments, bundle cleaning, resulting in a unit operation continuing at original design capabilities. A technical centre would provide opportunities for debottlenecking and performance improvement upgrades as process conditions change or simple adjustments that may be reducing plant overall throughput.
Life Cycle Comparison between Hudson and Low Cost Low Quality Manufacturer

<table>
<thead>
<tr>
<th>Cost Item</th>
<th>Hudson Products Corporation</th>
<th>20 Year Straight Line Calculation</th>
<th>Hudson LCC</th>
<th>Low Cost Low Quality Manufacturer</th>
<th>Low Cost LCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_i$ = Initial Cost per Cooler Bay (Base Case)</td>
<td>$200,000</td>
<td></td>
<td>$200,000</td>
<td>$170,000</td>
<td></td>
</tr>
<tr>
<td>$C_b$ = Bid Evaluation and Inspection Costs</td>
<td>Assume 1% due to history of quality and execution</td>
<td>$2,000</td>
<td>$2,000</td>
<td>3% due to unknown manufacturing procedures</td>
<td>$9,000</td>
</tr>
<tr>
<td>$C_{del}$ = Delivery and Installation Costs</td>
<td>Delivery at 1% for In Kingdom FOB point</td>
<td>$2,000</td>
<td>$2,000</td>
<td>Deliver at 8% for out of Kingdom FOB point</td>
<td>$16,000</td>
</tr>
<tr>
<td></td>
<td>Units are modularized, assume 4 men 4 hours</td>
<td>$800</td>
<td>$800</td>
<td>Triple to assemble bundles to modules and supports</td>
<td>$2,400</td>
</tr>
<tr>
<td>$C_e$ = Energy Cost</td>
<td>Base Case two 40HP motors loaded to 75% of capacity = 60 x 0.746 = 44.76 KW</td>
<td>44.76KW at $0.05/kW and 8000 hours per year over 20 years</td>
<td>$358,080</td>
<td>Low cost fans typically are tested at 25% less efficient than purported on specification sheet</td>
<td>$447,600</td>
</tr>
<tr>
<td>$C_{m}$, Maintenance Cost</td>
<td>Hudson fan replacement</td>
<td>No fan replacement over equipment lifespan</td>
<td>$151,400</td>
<td>Replacement once every 8 years with 2 hour equivalent loss of production</td>
<td>$303,200</td>
</tr>
<tr>
<td></td>
<td>Hudson bearing replacement</td>
<td>Replacement once every 8 years with 2 hour equivalent loss of production</td>
<td>$151,400</td>
<td>Half of the Hudson Bearing Life</td>
<td>$302,800</td>
</tr>
<tr>
<td>$C_{pe}$ = Cost of Poor Efficiency on Lost Production</td>
<td>None, units meet performance specifications</td>
<td></td>
<td>$127,750</td>
<td>Loss of 0.01% equivalent production per day due to incomplete condensing resulting in flaring.</td>
<td>$1,277,500</td>
</tr>
<tr>
<td>$C_s$ = Savings with Regional Technical Centres</td>
<td>Regular on site testing, inspection, fan adjustments, and bundle cleaning</td>
<td>Savings of 0.001% equivalent production per day with regular inspections.</td>
<td>$0</td>
<td>No aftermarket or technical support for upgrading, trouble shooting.</td>
<td>0</td>
</tr>
</tbody>
</table>

LCC = Total Life Cycle Cost

$586,530

$2,528,500

Assumptions:
Initial capital cost delta for low cost vendor = 15%
Plant Life = 20 years
Not adjusted for inflation
Labour rate for construction crews at $50 USD per hour.
Cost of Electricity = $0.05/kW
Typical Operating Unit Producing 50,000 Barrels per Day of Oil Equivalent Loss of Production at $145,800 per hour.
Price per Barrel of Oil = $70 USD
Average Running Time per Year = 8000 hours
Fan cost = $5000 per unit plus $800 labour to install 4 men 4 hours
Bearing Cost = $2000 per unit plus $800 labour to install 2 men 8 hours to install.
Bundle Replacement Cost = $30,000 per unit